LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Strong Chemical Interaction between Lithium Polysulfides and Flame-Retardant Polyphosphazene for Lithium-Sulfur Batteries with Enhanced Safety and Electrochemical Performance.

Photo from wikipedia

The shuttle effect of lithium polysulfides (LiPS) and potential safety hazard caused by the burning of flammable organic electrolytes, sulfur cathode, and lithium anode seriously limit the practical application of… Click to show full abstract

The shuttle effect of lithium polysulfides (LiPS) and potential safety hazard caused by the burning of flammable organic electrolytes, sulfur cathode, and lithium anode seriously limit the practical application of lithium-sulfur (Li-S) batteries. Here, a flame-retardant polyphosphazene (PPZ) covalently modified holey graphene/carbonized cellulose paper is reported as a multifunctional interlayer in Li-S batteries. During the discharge/charge process, once the LiPS are generated, the as-obtained flame-retardant interlayer traps them immediately through the nucleophilic substitution reaction between PPZ and LiPS, effectively inhibiting the shuttling effect of LiPS to enhance the cycle stability of Li-S batteries. Meanwhile, this strong chemical interaction increases the diffusion coefficient for lithium ions, accelerating the lithiation reaction with complete inversion. Moreover, the as-obtained interlayer can be used as a fresh 3D current collector to establish a flame-retardant "vice-electrode," which can trap dissolved sulfur and absorb a large amount of electrolyte, prominently bringing down the flammability of the sulfur cathode and electrolyte to improve the safety of Li-S batteries. This work provides a viable strategy for using PPZ-based materials as strong chemical scavengers for LiPS and a flame-retardant interlayer toward next-generation Li-S batteries with enhanced safety and electrochemical performance.

Keywords: flame retardant; lithium polysulfides; safety; strong chemical; lithium; sulfur

Journal Title: Advanced materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.