LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Solid-State Lithium Metal Batteries with Extended Cycling Enabled by Dynamic Adaptive Solid-State Interfaces.

Photo from wikipedia

Improving the long-term cycling stability of solid-state lithium (Li)-metal batteries (SSBs) is a severe challenge because of the notorious solid-solid interfacial contact loss originating from the repeated expansion and contraction… Click to show full abstract

Improving the long-term cycling stability of solid-state lithium (Li)-metal batteries (SSBs) is a severe challenge because of the notorious solid-solid interfacial contact loss originating from the repeated expansion and contraction of the Li anodes. Here, it is reported that high-performance SSBs are enabled by constructing brick-and-mortar electrolytes that can dynamically adapt to the interface changes during cycling. An electrolyte film with a high mechanical strain (250%) is fabricated by filling viscoelastic (600% strain) and piezoelectric block-copolymer electrolytes (mortar) into a mixed conductor Li0.33 La0.56 TiO3-x nanofiber film (brick). During Li-plating, the electrolytes can homogenize the interfacial electric field and generate piezoelectricity to promote uniform Li-deposition, while the mortar can adhere to the Li-anode without interfacial disintegration in the reversed Li-stripping. As a result, the electrolytes show excellent compatibility with the electrodes, leading to a long electrochemical cyclability at room temperature. The symmetrical Li//Li cells run stably for 1880 h without forming dendrites, and the LiFePO4 /Li full batteries deliver high coulombic efficiency (>99.5%) and capacity retention (>85%) over 550 cycles. More practically, the pouch cells exhibit excellent flexibility and safety for potential practical applications.

Keywords: solid state; state; lithium metal; cycling; metal batteries; state lithium

Journal Title: Advanced materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.