Epidermal electronic systems for detecting electrophysiological signals, sensing, therapy, and drug delivery are at the frontier in man-machine interfacing for healthcare. However, it is still a challenge to develop multifunctional… Click to show full abstract
Epidermal electronic systems for detecting electrophysiological signals, sensing, therapy, and drug delivery are at the frontier in man-machine interfacing for healthcare. However, it is still a challenge to develop multifunctional bioapplications with minimal invasiveness, biocompatibility, and stable electrical performance under various mechanical deformations of biological tissues. In this study, a natural silk protein with carbon nanotubes (CNTs) is utilized to realize an epidermal electronic tattoo (E-tattoo) system for multifunctional applications that address these challenging issues through dispersing highly conductive CNTs onto the biocompatible silk nanofibrous networks with porous nature to construct skin-adhesive ultrathin electronic patches. Individual components that incorporate electrically and optically active heaters, a temperature sensor (temperature coefficient of resistance of 5.2 × 10-3 °C-1 ), a stimulator for drug delivery (>500 µm penetration depth in skin), and real-time electrophysiological signal detectors are described. This strategy of E-tattoos integrated onto human skin can open a new route to a next-generation electronic platform for wearable and epidermal bioapplications.
               
Click one of the above tabs to view related content.