LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dense All-Electrochem-Active Electrodes for All-Solid-State Lithium Batteries.

Photo from wikipedia

The energy density presents the core competitiveness of lithium (Li)-ion batteries. In conventional Li-ion batteries, the utilization of the gravimetric/volumetric energy density at the electrode level is unsatisfactory ( Click to show full abstract

The energy density presents the core competitiveness of lithium (Li)-ion batteries. In conventional Li-ion batteries, the utilization of the gravimetric/volumetric energy density at the electrode level is unsatisfactory (<84 wt% and <62 vol%, respectively) due to the existence of non-electrochemical active parts among the 3D porous electrodes, including electrolytes, binders, and carbon additives. These are regarded as indispensable and irreducible components of the electronic and ionic transport network. Here, a dense "all-electrochem-active" (AEA) electrode for all-solid-state Li batteries is proposed, which is entirely constructed from a family of superior mixed electronic-ionic-conducting cathodes, to minimize the energy density gap between the accessible and theoretical energy density at the electrode level. Furthermore, with the ionic-electronic-conductive network self-supported from the AEA cathode, the dense hybrid sulfur (S)-based AEA electrode exhibits a high compacted filling rate of 91.8%, which indicates a high energy density of 777 W h kg-1 and 1945 W h L-1 at the electrode level based on the total cathodes and anodes when at 70 °C.

Keywords: solid state; energy; electrochem active; dense electrochem; energy density

Journal Title: Advanced materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.