LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reversible Photothermal Modulation of Electrical Activity of Excitable Cells using Polydopamine Nanoparticles.

Photo from wikipedia

Advances in the design and synthesis of nanomaterials with desired biophysicochemical properties can be harnessed to develop non-invasive neuromodulation technologies. Here, the reversible modulation of the electrical activity of neurons… Click to show full abstract

Advances in the design and synthesis of nanomaterials with desired biophysicochemical properties can be harnessed to develop non-invasive neuromodulation technologies. Here, the reversible modulation of the electrical activity of neurons and cardiomyocytes is demonstrated using polydopamine (PDA) nanoparticles as photothermal nanotransducers. In addition to their broad light absorption and excellent photothermal activity, PDA nanoparticles are highly biocompatible and biodegradable, making them excellent candidates for both in vitro and in vivo applications. The modulation of the activity (i.e., spike rate of the neurons and beating rate of cardiomyocytes) of excitable cells can be finely controlled by varying the excitation power density and irradiation duration. Under optimal conditions, reversible suppression (≈100%) of neural activity and reversible enhancement (two-fold) in the beating rate of cardiomyocytes is demonstrated. To improve the ease of interfacing of photothermal transducers with these excitable cells and enable spatial localization of the photothermal stimulus, a collagen/PDA nanoparticle foam is realized, which can be used as an "add-on patch" for photothermal stimulation. The non-genetic optical neuromodulation approach using biocompatible and biodegradable nanoparticles represents a minimally invasive method for controlling the activity of excitable cells with potential applications in nano-neuroscience and engineering.

Keywords: excitable cells; electrical activity; modulation electrical; using polydopamine; activity excitable; activity

Journal Title: Advanced materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.