LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quicker and More Zn2+ Storage Predominantly from the Interface.

Photo from wikipedia

Aqueous zinc-ion batteries are highly desirable for large-scale energy storage because of their low cost and high-level safety. However, achieving high energy and high power densities simultaneously is challenging. Herein,… Click to show full abstract

Aqueous zinc-ion batteries are highly desirable for large-scale energy storage because of their low cost and high-level safety. However, achieving high energy and high power densities simultaneously is challenging. Herein, a VOx sub-nanometer cluster/reduced graphene oxide (rGO) cathode material composed of interfacial VOC bonds is artificially constructed. Therein, a new mechanism is revealed, where Zn2+ ions are predominantly stored at the interface between VOx and rGO, which causes anomalous valence changes compared to conventional mechanisms and exploits the storage ability of non-energy-storing active yet highly conductive rGO. Further, this interface-dominated storage triggers decoupled transport of electrons/Zn2+ ions, and the reversible destruction/reconstruction allows the interface to store more ions than the bulk. Finally, an ultrahigh rate capability (174.4 mAh g-1 at 100 A g-1 , i.e., capacity retention of 39.4% for a 1000-fold increase in current density) and a high capacity (443 mAh g-1 at 100 mA g-1 , exceeding the theoretical capacities of each interfacial component) are achieved. Such interface-dominated storage is an exciting way to build high-energy- and high-power-density devices.

Keywords: storage; quicker zn2; energy; storage predominantly; zn2 storage; interface

Journal Title: Advanced materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.