LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Manipulating Electrocatalytic Li2 S Redox via Selective Dual-Defect Engineering for Li-S Batteries.

Photo from wikipedia

Lithium-sulfur (Li-S) batteries are promising candidates for next-generation energy storage, yet they are plagued by the notorious polysulfide shuttle effect and sluggish redox kinetics. While rationally designed redox mediators can… Click to show full abstract

Lithium-sulfur (Li-S) batteries are promising candidates for next-generation energy storage, yet they are plagued by the notorious polysulfide shuttle effect and sluggish redox kinetics. While rationally designed redox mediators can facilitate polysulfide conversion, favorable bidirectional sulfur electrocatalysis remains a formidable challenge. Herein, selective dual-defect engineering (i.e., introducing both N-doping and Se-vacancies) of a common MoSe2 electrocatalyst is used to manipulate the bidirectional Li2 S redox. Systematic theoretical prediction and detailed electrokinetic analysis reveal the selective electrocatalytic effect of the two types of defects, thereby achieving a deeper mechanistic understanding of the bidirectional sulfur electrochemistry. The Li-S battery using this electrocatalyst exhibits excellent cyclability, with a low capacity decay rate of 0.04% per cycle over 1000 cycles at 2.0 C. More impressively, the potential for practical applications is highlighted by a high areal capacity (7.3 mAh cm-2 ) and the construction of a flexible pouch cell. Such selective electrocatalysis created by dual-defect engineering is an appealing approach toward working Li-S systems.

Keywords: selective dual; defect engineering; dual defect; redox

Journal Title: Advanced materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.