LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Conductive Network and Dipole Field for Harnessing Photogenerated Charge Kinetics.

Photo from wikipedia

Photogenerated charge separation and directional transfer to active sites are pivotal steps in photocatalysis, which limit the efficiency of redox reactions. Here, a conductive network and dipole field are employed… Click to show full abstract

Photogenerated charge separation and directional transfer to active sites are pivotal steps in photocatalysis, which limit the efficiency of redox reactions. Here, a conductive network and dipole field are employed to harness photogenerated charge kinetics by using a Ti3 C2 /TiO2 network (TTN). The TTN exhibits a prolonged charge-carrier lifetime (1.026 ns) and an 11.76-fold increase in hexavalent chromium photoreduction reaction kinetics compared to TiO2 nanoparticles (TiO2 NPs). This super photocatalytic performance is derived from the efficient photogenerated charge kinetics, which is steered by the conductive network and dipole field. The conductivity enhancement of the TiO2 network is achieved by continuous chemical bonds, which promotes electron-hole (e-h) separation. In addition, at the interface of Ti3 C2 and TiO2 , band bending induced by the dipole field promotes photogenerated electron spatially directed transfer to the catalytic sites on Ti3 C2 . This study demonstrates that a conductive network and dipole field offer a new concept to harness charge kinetics for photocatalysis.

Keywords: network; photogenerated charge; charge; conductive network; dipole field

Journal Title: Advanced materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.