LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultra-stretchable and fast self-healing ionic hydrogel in cryogenic environments for artificial nerve fiber.

Photo by amandavickcreative from unsplash

Self-healing materials behave irreplaceable advantages in biomimetic intelligent robots (BIR) for avoiding or reducing safety hazards and economic losses from accidental damage during service. However, the self-healing ability is unreservedly… Click to show full abstract

Self-healing materials behave irreplaceable advantages in biomimetic intelligent robots (BIR) for avoiding or reducing safety hazards and economic losses from accidental damage during service. However, the self-healing ability is unreservedly lost and even becomes rigid, fragile in the cryogenic environment where BIR is precisely needed. Here, we report a versatile ionic hydrogel with fast self-healing ability, ultra-stretchability, and stable conductivity, even at -80℃. The hydrogel is systematically optimized to improve hydrogen-bonded network nanostructure, coordinated achieving a quick self-healing ability within 10 min, large deformation tolerance of over 7000%, superior conductivity of 11.76 S·cm-1 and anti-freezing ability, which is difficult to obtain simultaneously. Such hydrogel provides new opportunities for artificial electronic devices in harsh environments. As a prospective application, we fabricate an artificial nerve fiber by mimicking the structure and functions of the myelinated axon, exhibiting the property of fast and potential-gated signal transmission. This artificial nerve fiber is integrated into a robot for demonstrating a real-time high fidelity and high throughput information interaction under big deformation and cryogenic temperature. The hydrogel and bionic device will bring pioneering functions for robots and open a broad application scenario in extreme conditions. This article is protected by copyright. All rights reserved.

Keywords: artificial nerve; nerve fiber; self healing; hydrogel

Journal Title: Advanced materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.