LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Facile “Double‐Catalysts” Approach to Directionally Fabricate Pyridinic NB‐Pair‐Doped Crystal Graphene Nanoribbons/Amorphous Carbon Hybrid Electrocatalysts for Efficient Oxygen Reduction Reaction

Photo from wikipedia

Carbon material is a promising electrocatalyst for the oxygen reduction reaction (ORR). Doping of heteroatoms, the most widely used modulating strategy, has attracted many efforts in the past decade. Despite… Click to show full abstract

Carbon material is a promising electrocatalyst for the oxygen reduction reaction (ORR). Doping of heteroatoms, the most widely used modulating strategy, has attracted many efforts in the past decade. Despite all this, the catalytic activity of heteroatoms‐modulated carbon is hard to compare to that of metal‐based electrocatalysts. Here, a “double‐catalysts” (Fe salt, H3BO3) strategy is presented to directionally fabricate porous structure of crystal graphene nanoribbons (GNs)/amorphous carbon doped by pyridinic NB pairs. The porous structure and GNs accelerate ion/mass and electron transport, respectively. The N percentage in pyridinic NB pairs accounts for ≈80% of all N species. The pyridinic NB pair drives the ORR via an almost 4e− transfer pathway with a half‐wave potential (0.812 V vs reversible hydrogen electrode (RHE)) and onset potential (0.876 V vs RHE) in the alkaline solution. The ORR catalytic performance of the as‐prepared carbon catalysts approximates commercial Pt/C and outperforms most prior carbon‐based catalysts. The assembled Zn–air battery exhibits a high peak power density of 94 mW cm−2. Density functional theory simulation reveals that the pyridinic NB pair possesses the highest catalytic activity among all the potential configurations, due to the highest charge density at C active sites neighboring B, which enhances the interaction strength with the intermediates in the p‐band center.

Keywords: double catalysts; carbon; oxygen reduction; reduction reaction; pyridinic pair

Journal Title: Advanced Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.