Chiral inorganic nanostructures strongly interact with photons changing their polarization state. The resulting circularly polarized light emission (CPLE) has cross-disciplinary importance for a variety of chemical/biological processes and is essential… Click to show full abstract
Chiral inorganic nanostructures strongly interact with photons changing their polarization state. The resulting circularly polarized light emission (CPLE) has cross-disciplinary importance for a variety of chemical/biological processes and is essential for development of chiral photonics. However, the polarization effects are often complex and could be misinterpreted. CPLE in nanostructured media has multiple origins and several optical effects are typically convoluted into a single output. Analysing CPLE data obtained for nanoclusters, NPs, nanoassemblies, and nanocomposites from metals, chalcogenides, perovskite, and other nanostructures, we show that there are several distinct groups of nanomaterials for which CPLE is dominated either by circularly polarized luminescence (CPL) or circularly polarized scattering (CPS); there are also many nanomaterials for which they are comparable. We also show that (1) CPL and CPS contributions involve light-matter interactions at different structural levels; (2) contribution from CPS is especially strong for nanostructured microparticles, nanoassemblies and composites; and (3) engineering of materials with strongly polarized light emission requires synergistic implementation of CPL and CPS effects. These findings are expected to guide development of CPLE materials in a variety of technological fields, including 3D displays, information storage, biosensors, optical spintronics, and biological probes. This article is protected by copyright. All rights reserved.
               
Click one of the above tabs to view related content.