The development of bifunctional water‐splitting electrocatalysts that are efficient and stable over a wide range of pH is of great significance but challenging. Here, an atomically dispersed Ru/Co dual‐sites catalyst… Click to show full abstract
The development of bifunctional water‐splitting electrocatalysts that are efficient and stable over a wide range of pH is of great significance but challenging. Here, an atomically dispersed Ru/Co dual‐sites catalyst is reported anchored on N‐doped carbon (Ru/Co–N–C) for outstanding oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in both acidic and alkaline electrolytes. The Ru/Co–N–C catalyst requires the overpotential of only 13 and 23 mV for HER, 232 and 247 mV for OER to deliver a current density of 10 mA cmgeo−2 in 0.5 m H2SO4 and 1 m KOH, respectively, outperforming benchmark catalysts Pt/C and RuO2. Theoretical calculations reveal that the introduction of Co–N4 sites into Ru/Co–N–C efficiently modify the electronic structure of Ru by enlarging Ru–O covalency and increasing Ru electron density, which in turn optimize the bonding strength between oxygen/hydrogen intermediate species with Ru sites, thereby enhancing OER and HER performance. Furthermore, the incorporation of Co–N4 sites induces electron redistribution around Ru–N4, thus enhancing corrosion–resistance of Ru/Co–N–C during acid and alkaline electrolysis. The Ru/Co–N–C has been applied in a proton exchange membrane water electrolyzer and steady operation is demonstrated at a high current density of 450 mA cmgeo−2 for 330 h.
               
Click one of the above tabs to view related content.