LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Metasurface-Enhanced Infrared Spectroscopy: An Abundance of Materials and Functionalities.

Photo from wikipedia

Infrared (IR) spectroscopy provides unique information on the composition and dynamics of biochemical systems by resolving the characteristic absorption fingerprints of their constituent molecules. Based on this inherent chemical specificity… Click to show full abstract

Infrared (IR) spectroscopy provides unique information on the composition and dynamics of biochemical systems by resolving the characteristic absorption fingerprints of their constituent molecules. Based on this inherent chemical specificity and the capability for label-free, non-invasive, and real-time detection, IR spectroscopy approaches have unlocked a plethora of breakthrough application perspectives for fields ranging from environmental monitoring and defense to chemical analysis and medical diagnostics. Nanophotonics has played a crucial role for pushing the sensitivity limits of traditional far-field spectroscopy by using resonant nanostructures to focus the incident light into nanoscale hot-spots of the electromagnetic field, greatly enhancing light-matter interaction. Metasurfaces composed of regular arrangements of such resonators further increase the design space for tailoring this nanoscale light control both spectrally and spatially, which has established them as an invaluable toolkit for surface-enhanced spectroscopy. Starting from the fundamental concepts of metasurface-enhanced IR spectroscopy, we showcase a broad palette of resonator geometries, materials and arrangements for realizing highly sensitive metadevices, with a special focus on emerging systems such as phononic and 2D van der Waals materials, and integration with waveguides for lab-on-a-chip devices. Furthermore, we will highlight some advanced sensor functionalities of metasurface-based IR spectroscopy, including multiresonance, tunability, dielectrophoresis, live cell sensing, and machine-learning-aided analysis. This article is protected by copyright. All rights reserved.

Keywords: spectroscopy; spectroscopy abundance; metasurface enhanced; infrared spectroscopy; functionalities metasurface; enhanced infrared

Journal Title: Advanced materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.