LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Better Choice to Achieve High Volumetric Energy Density: Anode‐Free Lithium‐Metal Batteries

Photo by mbrunacr from unsplash

Volumetric energy density is a critical but easily neglected index of lithium‐metal batteries (LMBs). Compared with gravimetric energy density, the volumetric energy density (VED) of LMBs is much more sensitive… Click to show full abstract

Volumetric energy density is a critical but easily neglected index of lithium‐metal batteries (LMBs). Compared with gravimetric energy density, the volumetric energy density (VED) of LMBs is much more sensitive to the anode/cathode (A/C) ratio due to the low density of lithium (Li) metal and the volume expansion of the Li‐metal anode owing to its pulverization during cycles. Anode‐free LMBs (AF‐LMBs) have high theoretical VED due to the absence of an anode and high retention with relatively low cell expansion. Because Li plating highly depends on the mother substrate, Li plating on copper (Cu) substrates is more reversible and denser than that on Li substrates during cycling, which is beneficial for maintaining high volumetric capacity and efficient Li utilization. Therefore, considering that excess Li must be strictly limited to achieve competitive energy density, AF‐LMBs (with bare Cu foil as the anode current collector) for high‐volumetric‐density batteries are recommended.

Keywords: energy density; density; lithium metal; volumetric energy

Journal Title: Advanced Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.