LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Surface Modification of 2D Photocatalysts for Solar Energy Conversion

Photo from wikipedia

2D materials show many particular properties, such as high surface‐to‐volume ratio, high anisotropic degree, and adjustable chemical functionality. These unique properties in 2D materials have sparked immense interest due to… Click to show full abstract

2D materials show many particular properties, such as high surface‐to‐volume ratio, high anisotropic degree, and adjustable chemical functionality. These unique properties in 2D materials have sparked immense interest due to their applications in photocatalytic systems, resulting in significantly enhanced light capture, charge‐transfer kinetics, and surface reaction. Herein, the research progress in 2D photocatalysts based on varied compositions and functions, followed by specific surface modification strategies, is introduced. Fundamental principles focusing on light harvesting, charge separation, and molecular adsorption/activation in the 2D‐material‐based photocatalytic system are systemically explored. The examples described here detail the use of 2D materials in various photocatalytic energy‐conversion systems, including water splitting, carbon dioxide reduction, nitrogen fixation, hydrogen peroxide production, and organic synthesis. Finally, by elaborating the challenges and possible solutions for developing these 2D materials, the review is expected to provide some inspiration for the future research of 2D materials used on efficient photocatalytic energy conversions.

Keywords: energy conversion; energy; surface modification

Journal Title: Advanced Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.