LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Strain Engineering: A Boosting Strategy for Photocatalysis

Photo from wikipedia

Whilst the photocatalytic technique is considered to be one of the most significant routes to address the energy crisis and global environmental challenges, the solar‐to‐chemical conversion efficiency is still far… Click to show full abstract

Whilst the photocatalytic technique is considered to be one of the most significant routes to address the energy crisis and global environmental challenges, the solar‐to‐chemical conversion efficiency is still far from satisfying practical industrial requirements, which can be traced to the suboptimal bandgap and electronic structure of photocatalysts. Strain engineering is a universal scheme that can finely tailor the bandgap and electronic structure of materials, hence supplying a novel avenue to boost their photocatalytic performance. Accordingly, to explore promising directions for certain breakthroughs in strained photocatalysts, an overview on the recent advances of strain engineering from the basics of strain effect, creations of strained materials, as well as characterizations and simulations of strain level is provided. Besides, the potential applications of strain engineering in photocatalysis are summarized, and a vision for the future controllable‐electronic‐structure photocatalysts by strain engineering is also given. Finally, perspectives on the challenges for future strain‐promoted photocatalysis are discussed, placing emphasis on the creation and decoupling of strain effect, and the modification of theoretical frameworks.

Keywords: engineering boosting; photocatalysis; electronic structure; strain engineering; boosting strategy; engineering

Journal Title: Advanced Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.