LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Wet‐Adhesive On‐Skin Sensors Based on Metal–Organic Frameworks for Wireless Monitoring of Metabolites in Sweat

Photo from wikipedia

Metal–organic frameworks (MOFs) with well‐defined porous structures and tailored functionalities have been widely used in chemical sensing. However, the integration of MOFs with flexible electronic devices for wearable sensing is… Click to show full abstract

Metal–organic frameworks (MOFs) with well‐defined porous structures and tailored functionalities have been widely used in chemical sensing. However, the integration of MOFs with flexible electronic devices for wearable sensing is challenging because of their low electrical conductivity and fragile mechanical properties. Herein, a wearable sweat sensor for metabolite detection is presented by integrating an electrically conductive Ni‐MOF with a flexible nanocellulose substrate. The MOF‐based layered film sensor with inherent conductivity, highly porous structure, and active catalytic properties enables the selective and accurate detection of vitamin C and uric acid. More importantly, the lightweight sensor can conformably self‐adhere to sweaty skin and exhibits high water‐vapor permeability. Furthermore, a wireless epidermal nutrition tracking system for the in situ monitoring of the dynamics of sweat vitamin C is demonstrated, the results of which are comparable to those tested by high‐performance liquid chromatography. This study opens a new avenue for integrating MOFs as the active layer in wearable electronic devices and holds promise for the future development of high‐performance electronics with enhanced sensing, energy production, and catalytic capabilities through the implementation of multifunctional MOFs.

Keywords: organic frameworks; adhesive skin; wet adhesive; skin sensors; metal organic

Journal Title: Advanced Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.