LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Local Spin‐State Tuning of Iron Single‐Atom Electrocatalyst by S‐Coordinated Doping for Kinetics‐Boosted Ammonia Synthesis

Photo from wikipedia

The electrochemical nitrogen reduction reaction (e‐NRR) is envisaged as alternative technique to the Haber–Bosch process for NH3 synthesis. However, how to develop highly active e‐NRR catalysts faces daunting challenges. Herein,… Click to show full abstract

The electrochemical nitrogen reduction reaction (e‐NRR) is envisaged as alternative technique to the Haber–Bosch process for NH3 synthesis. However, how to develop highly active e‐NRR catalysts faces daunting challenges. Herein, a viable strategy to manipulate local spin state of isolated iron sites through S‐coordinated doping (FeSA‐NSC) is reported. Incorporation of S in the coordination of FeSA‐NSC can induce the transition of spin‐polarization configuration with the formation of a medium‐spin‐state of Fe (t2g6 eg1), which is beneficial for facilitating eg electrons to penetrate the antibonding π‐orbital of nitrogen. As a consequence, a record‐high current density up to 10 mA cm−2 can be achieved, together with a high NH3 selectivity of ≈10% in a flow cell reactor. Both experimental and theoretical analyses indicate that the monovalent Fe(I) atomic center in the FeSA‐NSC after the S doping accelerates the N2 activation and protonation in the rate‐determining step of *N2 to *NNH.

Keywords: synthesis; spin state; spin; local spin; coordinated doping

Journal Title: Advanced Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.