LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electrochemical Capacitors with Confined Redox Electrolytes and Porous Electrodes

Photo by mbrunacr from unsplash

Electrochemical capacitors (ECs), including electrical‐double‐layer capacitors and pseudocapacitors, feature high power densities but low energy densities. To improve the energy densities of ECs, redox electrolyte‐enhanced ECs (R‐ECs) or supercapbatteries are… Click to show full abstract

Electrochemical capacitors (ECs), including electrical‐double‐layer capacitors and pseudocapacitors, feature high power densities but low energy densities. To improve the energy densities of ECs, redox electrolyte‐enhanced ECs (R‐ECs) or supercapbatteries are designed through employing confined soluble redox electrolytes and porous electrodes. In R‐ECs the energy storage is based on diffusion‐controlled faradaic processes of confined redox electrolytes at the surface of a porous electrode, which thus take the merits of high power densities of ECs and high energy densities of batteries. In the past few years, there has been great progress in the development of this energy storage technology, particularly in the design and synthesis of novel redox electrolytes and porous electrodes, as well as the configurations of new devices. Herein, a full‐screen picture of the fundamentals and the state‐of‐art progress of R‐ECs are given together with a discussion and outlines about the challenges and future perspectives of R‐ECs. The strategies to improve the performance of R‐ECs are highlighted from the aspects of their capacitances and capacitance retention, power densities, and energy densities. The insight into the philosophies behind these strategies will be favorable to promote the R‐EC technology toward practical applications of supercapacitors in different fields.

Keywords: energy densities; energy; electrochemical capacitors; redox electrolytes; porous electrodes; electrolytes porous

Journal Title: Advanced Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.