LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Isolated‐Oxygen‐Vacancy Hardening in Lead‐Free Piezoelectrics

Photo from wikipedia

Defect engineering is a well‐established approach to customize the functionalities of perovskite oxides. In demanding high‐power applications of piezoelectric materials, acceptor doping serves as the state‐of‐the‐art hardening approach, but inevitably… Click to show full abstract

Defect engineering is a well‐established approach to customize the functionalities of perovskite oxides. In demanding high‐power applications of piezoelectric materials, acceptor doping serves as the state‐of‐the‐art hardening approach, but inevitably deteriorates the electromechanical properties. Here, a new hardening effect associated with isolated oxygen vacancies for achieving well‐balanced performances is proposed. Guided by theoretical design, a well‐balanced performance of mechanical quality factor (Qm) and piezoelectric coefficient (d33) is achieved in lead‐free potassium sodium niobate ceramics, where Qm increases by over 60% while d33 remains almost unchanged. By atomic‐scale Z‐contrast imaging, hysteresis measurement, and quantitative piezoresponse force microscopy analysis, it is revealed that the improved Qm results from the inhibition of both extrinsic and intrinsic losses while the unchanged d33 is associated with the polarization contributions being retained. More encouragingly, the hardening effect shows exceptional stability with increasing vibration velocity, offering potential in material design for practical high‐power applications such as pharmaceutical extraction and ultrasonic osteotomes.

Keywords: oxygen vacancy; lead free; hardening lead; vacancy hardening; isolated oxygen

Journal Title: Advanced Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.