LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Recyclable, Healable, and Tough Ionogels Insensitive to Crack Propagation

Photo from wikipedia

Most gels and elastomers introduce sacrificial bonds in the covalent network to dissipate energy. However, long‐term cyclic loading caused irreversible fatigue damage and crack propagation cannot be prevented. Furthermore, because… Click to show full abstract

Most gels and elastomers introduce sacrificial bonds in the covalent network to dissipate energy. However, long‐term cyclic loading caused irreversible fatigue damage and crack propagation cannot be prevented. Furthermore, because of the irreversible covalent crosslinked networks, it is a huge challenge to implement reversible mechanical interlocking and reorganize the polymer segments to realize the recycling and reuse of ionogels. Here, covalent crosslinking of host materials is replaced with entanglement. The entangled microdomains are used as physical crosslinking while introducing reversible bond interactions. The interpenetrating, entangled, and elastic microdomains of linear segments and covalent‐network microspheres provide mechanical stability, eliminate stress concentration at the crack tip under load, and achieve unprecedented tear and fatigue resistance of ionogels in any load direction. Moreover, reversible entanglements and noncovalent interactions can be disentangled and recombined to achieve recycling and mechanical regeneration, and the recyclability of covalent‐network microdomains is realized.

Keywords: crack; covalent network; healable tough; crack propagation; recyclable healable

Journal Title: Advanced Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.