LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Well‐Defined Fullerene Bisadducts Enable High‐Performance Tin‐Based Perovskite Solar Cells

Photo from wikipedia

Tin‐based perovskite solar cells (TPSCs) are attracting intense research interest due to their excellent optoelectric properties and eco‐friendly features. To further improve the device performance, developing new fullerene derivatives as… Click to show full abstract

Tin‐based perovskite solar cells (TPSCs) are attracting intense research interest due to their excellent optoelectric properties and eco‐friendly features. To further improve the device performance, developing new fullerene derivatives as electron transporter layers (ETLs) is highly demanded. Four well‐defined regioisomers (trans‐2, trans‐3, trans‐4, and e) of diethylmalonate‐C60 bisadduct (DCBA) are isolated and well characterized. The well‐defined molecular structure enables us to investigate the real structure‐dependent effects on photovoltaic performance. It is found that the chemical structures of the regioisomers not only affect their energy levels, but also lead to significant differences in their molecular packings and interfacial contacts. As a result, the devices with trans‐2, trans‐3, trans‐4, and e as ETLs yield efficiencies of 11.69%, 14.58%, 12.59%, and 10.55%, respectively, which are higher than that of the as‐prepared DCBA‐based (10.28%) device. Notably, the trans‐3‐based device also demonstrates a certified efficiency of 14.30%, representing one of the best‐performing TPSCs.

Keywords: well defined; based perovskite; solar cells; perovskite solar; tin based; performance

Journal Title: Advanced Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.