LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

MXene‐Boosted Imine Cathodes with Extended Conjugated Structure for Aqueous Zinc‐Ion Batteries

Photo by photographybyharry from unsplash

Organic molecules have been considered promising energy‐storage materials in aqueous zinc‐ion batteries (ZIBs), but are plagued by poor conductivity and structural instability because of the short‐range conjugated structure and low… Click to show full abstract

Organic molecules have been considered promising energy‐storage materials in aqueous zinc‐ion batteries (ZIBs), but are plagued by poor conductivity and structural instability because of the short‐range conjugated structure and low molecular weight. Herein, an imine‐based tris(aza)pentacene (TAP) with extended conjugated effects along the CN backbones is proposed, which is in situ injected into layered MXene to form a TAP/Ti3C2Tx cathode. Theoretical and electrochemical analyses reveal a selective H+/Zn2+ co‐insertion/extraction mechanism in TAP, which is ascribed to the steric effect on the availability of active CN sites. Moreover, Ti3C2Tx, as a conductive scaffold, favors fast Zn2+ diffusion to boost the electrode kinetics of TAP. Close electronic interactions between TAP and Ti3C2Tx preserve the structural integrity of TAP/Ti3C2Tx during the repeated charge/discharge. Accordingly, the TAP/Ti3C2Tx cathode delivers a high reversible capacity of 303 mAh g−1 at 0.04 A g−1 in aqueous ZIBs, which also realizes an ultralong lifetime over 10 000 cycles with a capacity retention of 81.6%. Furthermore, flexible Zn||TAP/Ti3C2Tx batteries with a quasi‐solid‐state electrolyte demonstrate potential application in wearable electronic devices. This work offers pivotal guidance to create highly stable organic electrodes for advanced ZIBs.

Keywords: tap; ion batteries; zinc ion; aqueous zinc; tap ti3c2tx; conjugated structure

Journal Title: Advanced Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.