LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

New Method for Preparing ZnO Layer for Efficient and Stable Organic Solar Cells

Photo from wikipedia

Owing to outstanding optoelectronic properties and simple preparation, zinc oxide (ZnO) has widely been used in organic solar cells (OSCs). Although versatile cathode interface materials have been designed in past,… Click to show full abstract

Owing to outstanding optoelectronic properties and simple preparation, zinc oxide (ZnO) has widely been used in organic solar cells (OSCs). Although versatile cathode interface materials have been designed in past, ZnO remains indispensable owing to its excellent overall performance. Therefore, solving the persistent problem of residual amine reacting with non‐fullerene acceptors will make ZnO superior over other materials, and thus improve the performance and energy budget of OSCs. Herein, a simple, effective, and economical method for removing residual amine in ZnO without distorting ZnO is reported. By accurately comparing the alkalinities of ZnO and residual amine, boric acid (BA) is selected as the amine‐removing agent because of its suitable acidic dissociation constant. Moreover, the high water solubility of BA ensures that the post‐cleaning process can be easily performed. The work function, electron extraction, and stability of cathode interface layer are optimized through rinsing them with BA. Consequently, the power conversion efficiency (PCE) and stability of OSCs under long‐term illumination are significantly improved. The optimal 0.04 and 1.00 cm2 single‐junction OSCs are based on PBDB‐TF:HDO‐4Cl:BTP‐eC9 bulk heterojunction output 18.40% and 17.42% efficiencies, respectively. Furthermore, tandem OSCs based on the BA‐treated ZnO exhibit a 19.56% PCE, demonstrating the reliability of this method.

Keywords: organic solar; solar cells; zno; layer; method; amine

Journal Title: Advanced Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.