LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Humidity Sensing with Supramolecular Nanostructures.

Photo by nahakiole from unsplash

Precise monitoring of the humidity level is important for the living comfort and for many applications in various industrial sectors. Humidity sensors have thus become one among the most extensively… Click to show full abstract

Precise monitoring of the humidity level is important for the living comfort and for many applications in various industrial sectors. Humidity sensors have thus become one among the most extensively studied and used chemical sensors by targeting a maximal device performance through the optimization of the components and working mechanism. Among different moisture-sensitive systems, supramolecular nanostructures are ideal active materials for the next generation of highly efficient humidity sensors. Their noncovalent nature guarantees fast response, high reversibility, and fast recovery time in the sensing event. Herein, the most enlightening recent strategies on the use of supramolecular nanostructures for humidity sensing are showcased. The key performance indicators in humidity sensing, including operation range, sensitivity, selectivity, response, and recovery speed are discussed as milestones for true practical applications. Some of the most remarkable examples of supramolecular-based humidity sensors are presented, by describing the finest sensing materials, the operating principles, and sensing mechanisms, the latter being based on the structural or charge-transport changes triggered by the interaction of the supramolecular nanostructures with the ambient humidity. Finally, the future directions, challenges, and opportunities for the development of humidity sensors with performance beyond the state of the art are discussed.

Keywords: humidity sensors; humidity; nanostructures humidity; humidity sensing; supramolecular nanostructures; sensing supramolecular

Journal Title: Advanced materials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.