LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In Situ Interweaved High Sulfur Loading Li–S Cathode by Catalytically Active Metalloporphyrin Based Organic Polymer Binders

Photo by itfeelslikefilm from unsplash

The elaborate design of powerful Li–S binders with extended‐functions like polysulfides adsorption/catalysis and Li+ hopping/transferring in addition to robust adhesion‐property has remained a challenge. Here, an in situ cathode‐interweaving strategy… Click to show full abstract

The elaborate design of powerful Li–S binders with extended‐functions like polysulfides adsorption/catalysis and Li+ hopping/transferring in addition to robust adhesion‐property has remained a challenge. Here, an in situ cathode‐interweaving strategy based on metalloporphyrin based covalent‐bonding organic polymer (M‐COP, M = Mn, Ni, and Zn) binders is reported for the first time. Thus‐produced functional binders possess excellent mechanical‐strengths, polysulfides adsorption/catalysis, and Li+ hopping/transferring ability. Specifically, the modulus of Mn‐COP can reach up to ≈54.60 GPa (≈40 times higher than poly(vinylidene fluoride)) and the relative cell delivers a high initial‐capacity (1027 mAh g‐1, 1 C and 913 mAh g‐1, 2 C), and excellent cycling‐stability for >1000 cycles even at 4 C. The utilization‐rate of sulfur can reach up to 81.8% and the electrodes based on these powerful binders can be easily scale‐up fabricated (≈20 cm in a batch‐experiment). Noteworthy, Mn‐COP based cell delivers excellent capacities at a high sulfur‐loading (8.6 mg cm‐2) and low E/S ratio (5.8 µL mg‐1). In addition, theoretical calculations reveal the vital roles of metalloporphyrin and thiourea‐groups in enhancing the battery‐performance.

Keywords: metalloporphyrin based; sulfur loading; organic polymer; cathode; high sulfur

Journal Title: Advanced Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.