LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bidirectional Water‐Stream Behavior on a Multifunctional Membrane for Simultaneous Energy Generation and Water Purification

Photo by phammi from unsplash

Hydroelectric nanogenerators have been previously proposed to recycle various water resources and polluted water. However, as conventional hydroelectric nanogenerators only utilize water resources, they cannot provide a fundamental solution for… Click to show full abstract

Hydroelectric nanogenerators have been previously proposed to recycle various water resources and polluted water. However, as conventional hydroelectric nanogenerators only utilize water resources, they cannot provide a fundamental solution for water recycling. In this study, a water purification membrane is proposed that can simultaneously generate electricity during the purification process (electricity generation and purification membrane (EPM)) for water recycling. As polluted water passes through the EPM, the water is purified in the perpendicular direction, while electricity is simultaneously produced in the horizontal direction by the movement of ions. Notably, the EPM exhibits high energy generation performance (maximum power 16.44 µW and energy 15.16 mJ) by the streaming effect of water‐streaming carbon nanotubes (CNTs). Moreover, by using a poly(acrylic acid)/carboxymethyl cellulose (PAA/CMC) binder to EPM, the energy‐generation performance and long‐term stability are substantially improved and outstanding mechanical stability is provided, regardless of the acidity of the water source (pH 1–10). More importantly, the EPM exhibits the water purification characteristics of >90% rejection of sub‐10 nm pollutants and potentiality of ångstrom level cation rejection, with simultaneous and continuous energy generation. Overall, this study proposes an efficient EPM model, which can be potentially used as a next‐generation renewable energy generation approach, thus laying the foundation for effective utilization of polluted water resources.

Keywords: generation; water; energy generation; water purification

Journal Title: Advanced Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.