LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Building K–C Anode with Ultrahigh Self‐Diffusion Coefficient for Solid State Potassium Metal Batteries Operating at −20 to 120 °C

Photo from wikipedia

Solid state potassium (K) metal batteries are intriguing in grid‐scale energy storage, benefiting from the low cost, safety, and high energy density. However, their practical applications are impeded by poor… Click to show full abstract

Solid state potassium (K) metal batteries are intriguing in grid‐scale energy storage, benefiting from the low cost, safety, and high energy density. However, their practical applications are impeded by poor K/solid electrolyte (SE) interfacial contact and limited capacity caused by the low K self‐diffusion coefficient, dendrite growth, and intrinsically low melting point/soft features of metallic K. Herein, a fused‐modeling strategy using potassiophilic carbon allotropes molted with K is demonstrated that can enhance the electrochemical performance/stability of the system via promoting K diffusion kinetics (2.37 × 10−8 cm2 s−1), creating a low interfacial resistance (≈1.3 Ω cm2), suppressing dendrite growth, and maintaining mechanical/thermal stability at 200 °C. A homogeneous/stable K stripping/plating is consequently implemented with a high current density of 2.8 mA cm−2 (at 25 °C) and a record‐high areal capacity of 11.86 mAh cm−2 (at 0.2 mA cm−2). The enhanced K diffusion kinetics contribute to sustaining intimate interfacial contact, stabilizing the stripping/plating at high current densities. Full cells coupling ultrathin K–C composite anodes (≈50 µm) with Prussian blue cathodes and β/β″‐Al2O3 SEs deliver a high energy density of 389 Wh kg−1 with a retention of 94.4% after 150 cycles and fantastic performances at −20 to 120 °C.

Keywords: potassium metal; state potassium; diffusion; metal batteries; solid state; self diffusion

Journal Title: Advanced Materials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.