LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

MXene‐Nanoflakes‐Enabled All‐Optical Nonlinear Activation Function for On‐Chip Photonic Deep Neural Networks

Photo by lobosnico from unsplash

2D metal carbides and nitrides (MXene) are promising material platforms for on‐chip neural networks owing to their nonlinear saturable absorption effect. The localized surface plasmon resonances in metallic MXene nanoflakes… Click to show full abstract

2D metal carbides and nitrides (MXene) are promising material platforms for on‐chip neural networks owing to their nonlinear saturable absorption effect. The localized surface plasmon resonances in metallic MXene nanoflakes may play an important role in enhancing the electromagnetic absorption; however, their contribution is not determined due to the lack of a precise understanding of its localized surface plasmon behavior. Here, a saturable absorber made of MXene thin film and a silicon waveguide with MXene flakes overlayer are developed to perform neuromorphic tasks. The proposed configurations are reconfigurable and can therefore be adjusted for various applications without the need to modify the physical structure of the proposed MXene‐based activator configurations via tuning the wavelength of operation. The capability and feasibility of the obtained results of machine‐learning applications are confirmed via handwritten digit classification task, with near 99% accuracy. These findings can guide the design of advanced ultrathin saturable absorption materials on a chip for a broad range of applications.

Keywords: neural networks; nanoflakes enabled; mxene nanoflakes; enabled optical; chip; mxene

Journal Title: Advanced Materials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.