LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Recent Progress in Colloidal Quantum Dot Thermoelectrics.

Photo from wikipedia

Semiconducting colloidal quantum dots (CQDs) represent an emerging class of thermoelectric materials for use in a wide range of future applications. CQDs combine solution processability at low temperatures with the… Click to show full abstract

Semiconducting colloidal quantum dots (CQDs) represent an emerging class of thermoelectric materials for use in a wide range of future applications. CQDs combine solution processability at low temperatures with the potential for upscalable manufacturing via printing techniques. Moreover, due to their low dimensionality, CQDs exhibit quantum confinement and a high density of grain boundaries, which can be independently exploited to tune the Seebeck coefficient and thermal conductivity, respectively. This unique combination of attractive attributes makes CQDs very promising for application in emerging thermoelectric generator (TEG) technologies operating near room temperature. Herein, we review recent progress in CQDs for application in emerging thin-film thermoelectrics. We start by outlining the fundamental concepts of thermoelectricity in nanostructured materials, followed by an overview of the popular synthetic methods used to produce CQDs with controllable size and shape. Recent strides in CQD-based thermoelectrics are then discussed with particular emphasis on their application in thin-film TEGs. Finally, we highlight the current challenges and future perspectives in enhancing the performance of CQD-based thermoelectric materials for use in emerging applications. This article is protected by copyright. All rights reserved.

Keywords: recent progress; progress colloidal; colloidal quantum; quantum dot

Journal Title: Advanced materials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.