LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Molecular Chameleon Carriers for Nucleic Acid Delivery: The Sweet Spot Between Lipoplexes and Polyplexes.

Photo by sharonmccutcheon from unsplash

Taking advantage of effective intracellular delivery mechanisms of both cationizable lipids and polymers, highly potent double pH-responsive nucleic acid carriers were generated by combining at least two lipo amino fatty… Click to show full abstract

Taking advantage of effective intracellular delivery mechanisms of both cationizable lipids and polymers, highly potent double pH-responsive nucleic acid carriers were generated by combining at least two lipo amino fatty acids (LAFs) as hydrophobic cationizable motifs with hydrophilic cationizable aminoethylene units into novel sequence-defined molecules. The pH-dependent tunable polarity of the LAF was successfully implemented by inserting a central tertiary amine, which disrupts the hydrophobic character once protonated, resulting in pH-dependent structural and physical changes. This "molecular chameleon character" turned out to be advantageous for dynamic nucleic acid delivery via lipopolyplexes. By screening of different topologies (blocks, bundles, T-shapes, U-shapes), LAF types, and LAF/aminoethylene ratios, highly potent pDNA, mRNA, and siRNA carriers were identified, which were up to several hundred-fold more efficient than previous carrier generations and characterized by very fast transfection kinetics. mRNA lipopolyplexes maintained high transfection activity in cell culture even in the presence of ≥90% serum at an ultra-low mRNA dose of 3 picogram (∼2 nanoparticles/cell), and thus are comparable in potency to viral nanoparticles. Importantly, they showed great in vivo performance with high expression levels especially in spleen, tumor, lungs, and liver upon intravenous administration of 1-3 μg luciferase-encoding mRNA in mice. This article is protected by copyright. All rights reserved.

Keywords: chameleon carriers; molecular chameleon; nucleic acid; acid delivery; delivery

Journal Title: Advanced materials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.