Metal halide perovskite-based tandem solar cells are promising to achieve power conversion efficiency beyond the theoretical limit of their single-junction counterparts. However, overcoming the significant open-circuit voltage deficit present in… Click to show full abstract
Metal halide perovskite-based tandem solar cells are promising to achieve power conversion efficiency beyond the theoretical limit of their single-junction counterparts. However, overcoming the significant open-circuit voltage deficit present in wide-bandgap perovskite solar cells remains a major hurdle for realising efficient and stable perovskite tandem cells. Here, we report a holistic approach to overcoming challenges in 1.8 eV perovskites solar cells by engineering the perovskite crystallisation pathway by means of chloride additives. In conjunction with employing a self-assembled monolayer as the hole transport layer, we achieved an open-circuit voltage of 1.25 V and a power conversion efficiency of 17.0%. We elucidate the key role of methylammonium chloride addition in facilitating the growth of a chloride-rich intermediate phase that directs crystallisation of the desired cubic perovskite phase, and induce more effective halide homogenisation. The as-formed 1.8 eV perovskite demonstrates suppressed halide segregation and improved optoelectronic properties. This article is protected by copyright. All rights reserved.
               
Click one of the above tabs to view related content.