LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Single‐Crystalline BaZr0.2Ti0.8O3 Membranes Enabled High Energy Density in PEI‐Based Composites for High‐Temperature Electrostatic Capacitors

Photo from wikipedia

Dielectric capacitors are promising for high power energy storage, but their breakdown strength (Eb) and energy density (Ue) usually degrade rapidly at high temperatures. Adding boron nitride (BN) nanosheets can… Click to show full abstract

Dielectric capacitors are promising for high power energy storage, but their breakdown strength (Eb) and energy density (Ue) usually degrade rapidly at high temperatures. Adding boron nitride (BN) nanosheets can improve the Eb and high‐temperature endurance but with a limited Ue due to its low dielectric constant. Here, freestanding single‐crystalline BaZr0.2Ti0.8O3 (BZT) membranes with high dielectric constant are fabricated, and introduced into BN doped polyetherimide (PEI) to obtain laminated PEI–BN/BZT/PEI–BN composites. At room temperature, the composite shows a maximum Ue of 17.94 J cm−3 at 730 MV m−1, which is more than two times the pure PEI. Particularly, the composites exhibit excellent dielectric‐temperature stability between 25 and 150 °C. An outstanding Ue = 7.90 J cm−3 is obtained at a relatively large electric field of 650 MV m−1 under 150 °C, which is superior to the most high‐temperature dielectric capacitors reported so far. Phase‐field simulation reveals that the depolarization electric field generated at the BZT/PEI–BN interfaces can effectively reduce carrier mobility, leading to the remarkable enhancement of the Eb and Ue over a wide temperature range. This work provides a promising and scalable route to develop sandwich‐structured composites with prominent energy storage performances for high‐temperature capacitive applications.

Keywords: crystalline bazr0; temperature; high temperature; energy density; single crystalline

Journal Title: Advanced Materials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.