LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Excimer-Mediated Ultrafast Intermolecular Nonradiative Decay Enables Giant Photothermal Performance for Optimized Phototheranostic.

Photo by jordanmcdonald from unsplash

Developing organic photothermal materials (OPMs) with high photothermal performance for phototheranostic mainly focus on the manipulation of intramolecular nonradiative (intraNR) decay, which often requires quite complicated and time-consuming molecular engineering.… Click to show full abstract

Developing organic photothermal materials (OPMs) with high photothermal performance for phototheranostic mainly focus on the manipulation of intramolecular nonradiative (intraNR) decay, which often requires quite complicated and time-consuming molecular engineering. In addition to intraNR decay, intermolecular nonradiative (interNR) decay is equally important and more convenient in governing photothermal performance. However, controlling interNR decay remains challenging due to the limited understanding of their origin and dynamics. Here, systemic investigation of intraNR and interNR decay directs the first demonstration of simple manipulation of interNR decay to produce a giant photothermal performance for optimized phototheranostic. Among three designed polymers with varying fluorine substitution, structure-performance studies reveal a dimer-initiated interNR decay to improve photothermal performance. Dimer is formed by intermolecular C-F···H hydrogen bond. This finding inspires a simple aggregation control strategy to form excited dimer, namely excimer. It initiates an approximately 100-fold enhancement in interNR decay rate over conventional intraNR decay to produce ultrahigh photothermal conversion efficiency of 81% for efficient photoacoustic imaging-guided photothermal therapy in vivo. This study provides insights into interNR decay in achieving a giant photothermal effect and paves a convenient way to develop high-performance OPMs. This article is protected by copyright. All rights reserved.

Keywords: photothermal performance; giant photothermal; decay; internr decay; performance

Journal Title: Advanced materials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.