LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Solution Processable Metal Oxide Thin Film Deposition and Material Growth for Electronic and Photonic Devices

Photo from wikipedia

A comprehensive review of recent advances in solution processing and growth of metal-oxide thin films for electronic and photonic devices is presented, with specific focus on precise solution-based technological coatings… Click to show full abstract

A comprehensive review of recent advances in solution processing and growth of metal-oxide thin films for electronic and photonic devices is presented, with specific focus on precise solution-based technological coatings for electronics and optics, and new concepts for oxide material growth for electrochemical, catalytic, energy storage and conversion systems, information technology, semiconductor device processing and related devices. Throughout, the nature of the soluble precursors solutions and their relationship to film formation process by various solution coating techniques are collated and compared, highlighting advantages in precursor design for creating complex oxides for devices. Because of the versatility of solution-processable oxides and functional material coating, it is important to capture the advances made in oxide deposition for plastic electronics, see-through and wearable devices, and high-fidelity thin film transistors on curved or flexible displays. Solution processing, even for oxides, allows control over composition, thickness, optical constants, porosity, doping, tunable optical absorbance/transmission, band structure engineering, 3D-substrate coating, complex composite oxide formation and multi-layered oxide systems that are more difficult to achieve using chemical vapor deposition (CVD) or atomic layer deposition (ALD) processes. We also discuss limitations of solution processing for some technologies and comment on the future of solution-based processing of metal-oxide materials for electronics, photonics and other technologies.

Keywords: metal oxide; deposition; solution; film; growth

Journal Title: Advanced Materials Interfaces
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.