LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

12.29% Low Temperature–Processed Dopant‐Free CdS/p‐Si Heterojunction Solar Cells

Photo from wikipedia

Most crystalline silicon (c‐Si) solar cells are based on high temperature–processed p‐n junctions or highly doped heterojunctions. The concept of dopant‐free carrier selective contact has become a research hotspot and… Click to show full abstract

Most crystalline silicon (c‐Si) solar cells are based on high temperature–processed p‐n junctions or highly doped heterojunctions. The concept of dopant‐free carrier selective contact has become a research hotspot and been successfully demonstrated with n‐type Si wafers, showing the great potential of simplified fabrication process and lower thermal‐consuming. However, there are few successful cases on p‐Si, dopant‐free p‐Si/CdS (cadmium sulfide)/ITO (indium tin oxide) solar cells with champion efficiency of 12.29% (device area 4 cm2) have been demonstrated with DC magnetron sputtered CdS thin films working as electron‐selective contact. A proper annealing treatment is found essential in improving the p‐Si/CdS/ITO heterocontact and device performance. The author's preliminary results confirm the feasibility of preparation of efficient p‐Si wafer–based dopant‐free solar cells.

Keywords: temperature processed; free cds; dopant free; low temperature; solar cells

Journal Title: Advanced Materials Interfaces
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.