LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Low Temperature Growth of Crystalline Semiconductors on Nonepitaxial Substrates

Photo from wikipedia

In this work, a low temperature templated liquid phase (LT‐TLP) growth process is presented, that enables one to directly grow high optoelectronic quality single crystalline compound semiconductors (InP and InAs)… Click to show full abstract

In this work, a low temperature templated liquid phase (LT‐TLP) growth process is presented, that enables one to directly grow high optoelectronic quality single crystalline compound semiconductors (InP and InAs) on amorphous dielectrics at temperatures below 400 °C. Uniquely, the material quality is optimal when InP is grown at 300 °C, a temperature which is low enough to enable back‐end‐of‐line growth on fully fabricated Si complementary metal oxide semiconductor circuits. Using this low‐temperature grown InP, a transistor fabrication process is then entirely carried out at 300 °C or below, and an indium phosphide nanoribbon field effect transistor with excellent on/off ratios is demonstrated, indicating low defect density in the material. Overall, this approach enables growth of large area (tens of micron) single crystal compound semiconductor at low temperatures, establishing a back‐end‐of‐line (BEOL) compatible process for monolithic 3D device integration.

Keywords: growth; temperature growth; temperature; low temperature; growth crystalline

Journal Title: Advanced Materials Interfaces
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.