LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Conducting Polymers as Anode Buffer Materials in Organic and Perovskite Optoelectronics

Photo from academic.microsoft.com

This review focuses on the importance and the key functions of anode interfacial layers based on conducting polymers in organic and organic–inorganic hybrid perovskite optoelectronics. Insertion of a buffer layer… Click to show full abstract

This review focuses on the importance and the key functions of anode interfacial layers based on conducting polymers in organic and organic–inorganic hybrid perovskite optoelectronics. Insertion of a buffer layer between electrode and semiconducting layers is the most common and effective way to control interfacial properties and eventually improve device characteristics, such as luminous efficiency in light-emitting diodes and power conversion efficiency in solar cells. Conducting polymers are considered as one of the most promising materials for future organic and organic–inorganic hybrid electronics because of advantages such as a simple film-forming process and ease of tailoring electrical and physical properties; as a result, using these polymers is compatible with the production of large-area, low-cost, and solution-processed flexible optoelectronic devices. This review introduces the limitations of anode buffer layers based on conducting polymers and then we will provide recent research trends of material engineering to overcome these problems.

Keywords: conducting polymers; perovskite optoelectronics; anode buffer; polymers anode; buffer materials

Journal Title: Advanced Optical Materials
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.