A solution to the fabrication of amorphous Ga2O3 solar-blind photodetectors on rigid and flexible substrates at room temperature is reported. A robust improvement in the response speed is achieved by… Click to show full abstract
A solution to the fabrication of amorphous Ga2O3 solar-blind photodetectors on rigid and flexible substrates at room temperature is reported. A robust improvement in the response speed is achieved by delicately controlling the oxygen flux in the reactive radio frequency magnetron sputtering process. Temporal response measurements show that the detector on quartz has a fast decay time of 19.1 µs and a responsivity of 0.19 A W−1 as well, which are even better than those single crystal Ga2O3 counterparts prepared at high temperatures. X-ray photoelectron spectroscopy and current–voltage tests suggest that the reduced oxygen vacancy concentration and the increased Schottky barrier height jointly contribute to the faster response speed. Amorphous Ga2O3 solar-blind photodetector is further constructed on polyethylene naphthalate substrate. The flexible devices demonstrate similar photoresponse behavior as the rigid ones, and no significant degradation of the device performance is observed in bending states and fatigue tests. The results reveal the importance of finely tuned oxygen processing gas in promoting the device performance and the applicability of room-temperature synthesized amorphous Ga2O3 in fabrication of flexible solar-blind photodetectors.
               
Click one of the above tabs to view related content.