LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Stretchable Terahertz Parabolic‐Shaped Metamaterial

Photo by kellysikkema from unsplash

A stretchable parabolic‐shaped metamaterial (PSM) coated onto polydimethylsiloxane (PDMS) is proposed and demonstrated for operation in the terahertz (THz) frequency range. By stretching the PDMS‐based PSM device along different directions,… Click to show full abstract

A stretchable parabolic‐shaped metamaterial (PSM) coated onto polydimethylsiloxane (PDMS) is proposed and demonstrated for operation in the terahertz (THz) frequency range. By stretching the PDMS‐based PSM device along different directions, ultranarrowband, polarization dependent, switchable optical characteristics are obtained. By stretching the PSM width and length in the transverse electric (TE) and transverse magnetic (TM) modes, resonant tuning ranges of 0.55 and 0.32 THz, respectively, are demonstrated for the PSM device. In these deformation ranges, the Q‐factors of the PSM device for different widths and lengths are quite stable and maintained in the range of 9 to 14 for the TE mode, with a high Q‐factor of 50 obtained at resonance for the TM mode. The integration of the PSM on a mechanically deformable PDMS substrate provides potential for use in flexible electronics applications. Furthermore, the PSM device exhibits single‐/dual‐band switching and polarization switching characteristics. These multifunctional states for the PSM device can be determined by mechanical inputs to represent binary digits that can then be used to perform logic operations. Such a stretchable PSM device offers an effective approach for the realization of programmable metamaterials with enhanced optical‐mechanical performance due to its high flexibility, applicability, and cost‐effectiveness.

Keywords: shaped metamaterial; psm device; parabolic shaped; device

Journal Title: Advanced Optical Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.