LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Detection of Subsurface, Nanometer‐Scale Crystallographic Defects by Nonlinear Light Scattering and Localization

Photo from wikipedia

Heteroepitaxial crystalline films underlie many electronic and optical technologies but are prone to forming defects at their heterointerfaces. Atomic‐scale defects such as threading dislocations that propagate into a film impede… Click to show full abstract

Heteroepitaxial crystalline films underlie many electronic and optical technologies but are prone to forming defects at their heterointerfaces. Atomic‐scale defects such as threading dislocations that propagate into a film impede the flow of charge carriers and light degrading electrical/optical performance of devices. Diagnosis of subsurface defects traditionally requires time‐consuming invasive techniques such as cross‐sectional transmission electron microscopy. Using III–V films grown on Si, noninvasive, bench‐top diagnosis of subsurface defects have been demonstrated by optical second‐harmonic scanning probe microscope. A high‐contrast pattern is observed of subwavelength “hot spots” caused by scattering and localization of fundamental light by defect scattering sites. Size of these observed hotspots are strongly correlated to the density of dislocation defects. The results not only demonstrate a global and versatile method for diagnosing subsurface scattering sites but uniquely elucidate optical properties of disordered media. An extension to third harmonics would enable irregularities detection in non‐χ(2) materials making the technique universally applicable.

Keywords: detection subsurface; subsurface nanometer; subsurface; scattering localization

Journal Title: Advanced Optical Materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.