LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nanoscale Optical Imaging of 2D Semiconductor Stacking Orders by Exciton‐Enhanced Second Harmonic Generation

Photo from wikipedia

Second harmonic generation (SHG) is a nonlinear optical response arising exclusively from broken inversion symmetry in the electric-dipole limit. Recently, SHG has attracted widespread interest as a versatile and noninvasive… Click to show full abstract

Second harmonic generation (SHG) is a nonlinear optical response arising exclusively from broken inversion symmetry in the electric-dipole limit. Recently, SHG has attracted widespread interest as a versatile and noninvasive tool for characterization of crystal symmetry and emerging ferroic or topological orders in quantum materials. However, conventional far-field optics is unable to probe local symmetry at the deep subwavelength scale. Here, we demonstrate near-field SHG imaging of 2D semiconductors and heterostructures with the spatial resolution down to 20 nm using a scattering-type nano-optical apparatus. We show that near-field SHG efficiency is greatly enhanced by excitons in atomically thin transition metal dichalcogenides. Furthermore, by correlating nonlinear and linear scattering-type nano-imaging, we resolve nanoscale variations of interlayer stacking order in bilayer WSe2, and reveal the stacking-tuned excitonic light-matterinteractions. Our work demonstrates nonlinear optical interrogation of crystal symmetry and structure-property relationships at the nanometer length scales relevant to emerging properties in

Keywords: harmonic generation; optical imaging; nanoscale optical; symmetry; second harmonic

Journal Title: Advanced Optical Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.