LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dopant‐Free and Carrier‐Selective Heterocontacts for Silicon Solar Cells: Recent Advances and Perspectives

Photo by nci from unsplash

Abstract By combining the most successful heterojunctions (HJ) with interdigitated back contacts, crystalline silicon (c‐Si) solar cells (SCs) have recently demonstrated a record efficiency of 26.6%. However, such SCs still… Click to show full abstract

Abstract By combining the most successful heterojunctions (HJ) with interdigitated back contacts, crystalline silicon (c‐Si) solar cells (SCs) have recently demonstrated a record efficiency of 26.6%. However, such SCs still introduce optical/electrical losses and technological issues due to parasitic absorption/Auger recombination inherent to the doped films and the complex process of integrating discrete p+‐ and n+‐HJ contacts. These issues have motivated the search for alternative new functional materials and simplified deposition technologies, whereby carrier‐selective contacts (CSCs) can be formed directly with c‐Si substrates, and thereafter form IBC cells, via a dopant‐free method. Screening and modifying CSC materials in a wider context is beneficial for building dopant‐free HJ contacts with better performance, shedding new light on the relatively mature Si photovoltaic field. In this review, a significant number of achievements in two representative dopant‐free hole‐selective CSCs, i.e., poly(3,4‐ethylene dioxythiophene):poly(styrenesulfonate)/Si and transition metal oxides/Si, have been systemically presented and surveyed. The focus herein is on the latest advances in hole‐selective materials modification, interfacial passivation, contact resistivity, light‐trapping structure and device architecture design, etc. By analyzing the structure–property relationships of hole‐selective materials and assessing their electrical transport properties, promising functional materials as well as important design concepts for such CSCs toward high‐performance SCs have been highlighted.

Keywords: dopant free; silicon solar; carrier selective; hole selective; solar cells

Journal Title: Advanced Science
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.