LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhancing Efficiency and Stability of Photovoltaic Cells by Using Perovskite/Zr‐MOF Heterojunction Including Bilayer and Hybrid Structures

Photo by nci from unsplash

Abstract In this study, the effectiveness of using a perovskite/Zr‐metal–organic frameworks (MOFs) heterojunction in realizing efficient and stable inverted p–i–n perovskite solar cells (PVSCs) is demonstrated. Two types of Zr‐MOFs,… Click to show full abstract

Abstract In this study, the effectiveness of using a perovskite/Zr‐metal–organic frameworks (MOFs) heterojunction in realizing efficient and stable inverted p–i–n perovskite solar cells (PVSCs) is demonstrated. Two types of Zr‐MOFs, UiO‐66 and MOF‐808, are investigated owing to their respectable moisture and chemical stabilities. The MOFs while serving as an interlayer in conjunction with the perovskite film are shown to possess the advantages of UV‐filtering capability and enhancing perovskite crystallinity. Consequently, the UiO‐66/MOF‐808‐modified PVSCs yield enhanced power conversion efficiencies (PCEs) of 17.01% and 16.55%, outperforming the control device (15.79%). While further utilizing a perovskite/Zr‐MOF hybrid heterojunction to fabricate the devices, the hybrid MOFs are found to possibly distribute over the perovskite grain boundary providing a grain‐locking effect to simultaneously passivate the defects and to reinforce the film's robustness against moisture invasion. As a result, the PCEs of the UiO‐66/MOF‐808‐hybrid PVSCs are further enhanced to 18.01% and 17.81%, respectively. Besides, over 70% of the initial PCE is retained after being stored in air (25 °C and relative humidity of 60 ± 5%) for over 2 weeks, in contrast to the quick degradation observed for the control device. This study demonstrates the promising potential of using perovskite/MOF heterojunctions to fabricate efficient and stable PVSCs.

Keywords: using perovskite; perovskite mof; mof 808; uio mof; heterojunction; enhancing efficiency

Journal Title: Advanced Science
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.