LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Nanostrategy for Efficient Imaging‐Guided Antitumor Therapy through a Stimuli‐Responsive Branched Polymeric Prodrug

Photo from wikipedia

Abstract A stimuli‐responsive polymeric prodrug‐based nanotheranostic system with imaging agents (cyanine5.5 and gadolinium‐chelates) and a therapeutic agent paclitaxel (PTX) is prepared via polymerization and conjugating chemistry. The branched polymeric PTX‐Gd‐based… Click to show full abstract

Abstract A stimuli‐responsive polymeric prodrug‐based nanotheranostic system with imaging agents (cyanine5.5 and gadolinium‐chelates) and a therapeutic agent paclitaxel (PTX) is prepared via polymerization and conjugating chemistry. The branched polymeric PTX‐Gd‐based nanoparticles (BP‐PTX‐Gd NPs) demonstrate excellent biocompatibility, and high stability under physiological conditions, but they stimuli‐responsively degrade and release PTX rapidly in a tumor microenvironment. The in vitro behavior of NPs labeled with fluorescent dyes is effectively monitored, and the NPs display high cytotoxicity to 4T1 cells similar to free PTX by impairing the function of microtubules, downregulating anti‐apoptotic protein Bcl‐2, and upregulating the expression of Bax, cleaved caspase‐3, cleaved caspase‐9, cleaved‐PARP, and p53 proteins. Great improvement in magnetic resonance imaging (MRI) is demonstrated by these NPs, and MRI accurately maps the temporal change profile of the tumor volume after injection of NPs and the tumor treatment process is also closely correlated with the T 1 values measured from MRI, demonstrating the capability of providing real‐time feedback to the chemotherapeutic treatment effectiveness. The imaging‐guided chemotherapy to the 4T1 tumor in the mice model achieves an excellent anti‐tumor effect. This stimuli‐responsive polymeric nano‐agent opens a new door for efficient breast cancer treatment under the guidance of fluorescence/MRI.

Keywords: ptx; imaging guided; polymeric prodrug; branched polymeric; stimuli responsive

Journal Title: Advanced Science
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.