Abstract Solar‐driven overall water splitting based on metal sulfide semiconductor photocatalysts remains as a challenge owing to the strong charge recombination and deficient catalytic active sites. Additionally, significant inhibition of… Click to show full abstract
Abstract Solar‐driven overall water splitting based on metal sulfide semiconductor photocatalysts remains as a challenge owing to the strong charge recombination and deficient catalytic active sites. Additionally, significant inhibition of back reactions, especially the oxidation of sulfide ions during the photocatalytic water oxidation catalysis, is an arduous task that requires an efficient photogenerated hole transfer dynamics. Here, a ternary dumbbell‐shaped catalyst based on RuO2/CdS/MoS2 with spatially separated catalytic sites is developed to achieve simultaneous production of hydrogen and oxygen under simulated solar‐light without any sacrificial agents. Particularly, MoS2 nanosheets anchored on the two ends of CdS nanowires are identified as a reduction cocatalyst to accelerate hydrogen evolution, while RuO2 nanoparticles as an oxidation cocatalyst are deposited onto the sidewalls of CdS nanowires to facilitate oxygen evolution kinetics. The density functional theory simulations and ultrafast spectroscopic results reveal that photogenerated electrons and holes directionally migrate to MoS2 and RuO2 catalytic sites, respectively, thus achieving efficient charge carrier separation. The design of ternary dumbbell structure guarantees metal sulfides against photocorrosion and thus extends their range in solar water splitting.
               
Click one of the above tabs to view related content.