LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

ZnO-Ti3 C2 MXene Electron Transport Layer for High External Quantum Efficiency Perovskite Nanocrystal Light-Emitting Diodes.

Photo by eiskonen from unsplash

2D transition metal carbides, nitrides, and carbonitrides called MXenes show outstanding performance in many applications due to their superior physical and chemical properties. Herein, a ZnO-MXene mixture with different contents… Click to show full abstract

2D transition metal carbides, nitrides, and carbonitrides called MXenes show outstanding performance in many applications due to their superior physical and chemical properties. Herein, a ZnO-MXene mixture with different contents of Ti3 C2 is applied as electron transport layers (ETLs) and the influence of the Ti3 C2 MXene in all-inorganic metal halide perovskite nanocrystal light-emitting diodes (perovskite NC LEDs) is explored. The addition of Ti3 C2 makes more balanced charge carrier transport in LEDs by changing the energy level structure and electron mobility of ETL. Moreover, lower surface roughness is obtained for the ETL, thus guaranteeing uniform distribution of the perovskite NCs layer and further reducing leakage current. As a result, a 17.4% external quantum efficiency (EQE) with low efficiency roll-off is achieved with 10% Ti3 C2 , which is a 22.5% improvement compared to LEDs without Ti3 C2 .

Keywords: transport; ti3 mxene; electron transport; efficiency; nanocrystal light; perovskite nanocrystal

Journal Title: Advanced science
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.