LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Controllable and Diversiform Topological Morphologies of Self‐Assembling Supra‐Amphiphiles with Aggregation‐Induced Emission Characteristics for Mimicking Light‐Harvesting Antenna

Photo from wikipedia

Abstract Controllable construction of diversiform topological morphologies through supramolecular self‐assembly on the basis of single building block is of vital importance, but still remains a big challenge. Herein, a bola‐type… Click to show full abstract

Abstract Controllable construction of diversiform topological morphologies through supramolecular self‐assembly on the basis of single building block is of vital importance, but still remains a big challenge. Herein, a bola‐type supra‐amphiphile, namely DAdDMA@2β‐CD, is rationally designed and successfully prepared by typical host–guest binding β‐cyclodextrin units with an aggregation‐induced emission (AIE)‐active scaffold DAdDMA. Self‐assembling investigation reveals that several morphologies of self‐assembled DAdDMA@2β‐CD including leaf‐like lamellar structure, nanoribbons, vesicles, nanofibers, helical nanofibers, and toroids, can be straightforwardly fabricated by simply manipulating the self‐assembling solvent proportioning and/or temperature. To the best of knowledge, this presented protocol probably holds the most types of self‐assembling morphology alterations using a single entity. Moreover, the developed leaf‐like lamellar structure performs well in mimicking the light‐harvesting antenna system by incorporating with a Förster resonance energy transfer acceptor, providing up to 94.2% of energy transfer efficiency.

Keywords: self assembling; aggregation induced; topological morphologies; morphologies self; diversiform topological; induced emission

Journal Title: Advanced Science
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.