LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Boosting Nitrogen Reduction Reaction via Electronic Coupling of Atomically Dispersed Bismuth with Titanium Nitride Nanorods

Photo by conscious_design from unsplash

Electrocatalytic nitrogen reduction reaction (NRR) is a promising alternative to the traditional Haber–Bosch process. However, the sluggish kinetics and competitive hydrogen evolution reaction result in poor NH3 yield and low… Click to show full abstract

Electrocatalytic nitrogen reduction reaction (NRR) is a promising alternative to the traditional Haber–Bosch process. However, the sluggish kinetics and competitive hydrogen evolution reaction result in poor NH3 yield and low Faradaic efficiency (FE). Herein, single bismuth atoms incorporated hollow titanium nitride nanorods encapsulated in nitrogen‐doped carbon layer (NC) supported on carbon cloth (NC/Bi SAs/TiN/CC) is constructed for electrocatalytic NRR. Impressively, as an integrated electrode, it exhibits a superior ammonia yield rate of 76.15 µg mgcat−1 h−1 (9859 µg μmolBi−1 h−1) at −0.8 V versus RHE and a high FE of 24.60% at −0.5 V versus RHE in 0.1 m Na2SO4 solution, which can retain stable performance in 10 h continuous operation, surpassing the overwhelming majority of reported Bi‐based NRR catalysts. Coupling various characterizations with theory calculations, it is disclosed that the unique monolithic core‐shell configuration with porous structure endows abundant accessible active sites, outstanding charge‐transfer property, and good stability, while the cooperation effect of Bi SAs and TiN can simultaneously promote the hydrogenation of N2 into NH3* on the TiN surface and the desorption of NH3* to release NH3 on the Bi SA sites. These features result in the significant promotion of NRR performance.

Keywords: reduction reaction; nitride nanorods; reaction; nitrogen reduction; titanium nitride

Journal Title: Advanced Science
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.