LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Highly Loaded Independent Pt0 Atoms on Graphdiyne for pH‐General Methanol Oxidation Reaction

Photo by brianasarejr from unsplash

The emergence of platinum‐based catalysts promotes efficient methanol oxidation reactions (MOR). However, the defects of such noble metal catalysts are high cost, easy poisoning, and limited commercial applications. The efficient… Click to show full abstract

The emergence of platinum‐based catalysts promotes efficient methanol oxidation reactions (MOR). However, the defects of such noble metal catalysts are high cost, easy poisoning, and limited commercial applications. The efficient utilization of a low‐cost, anti‐poisoning catalyst has been expected. Here, it is skillfully used N‐doped graphdiyne (NGDY) to prepare a zero‐valent platinum atomic catalyst (Pt/NGDY), which shows excellent activity, high pH adaptability, and high CO tolerance for MOR. The Pt/NGDY electrocatalysts for MOR with specific activity 154.2 mA cm−2 (1449.3 mA mgPt−1), 29 mA cm−2 (296 mA mgPt−1) and 22 mA cm−2 (110 mA mgPt−1) in alkaline, acid, and neutral solutions. The specific activity of Pt/NGDY is 9 times larger than Pt/C in alkaline solution. Density functional theory (DFT) calculations confirm that the incorporation of electronegativity nitrogen atoms can increase the high coverage of Pt to achieve a unique atomic state, in which the shared contributions of different Pt sites reach the balance between the electroactivity and the stability to guarantee the higher performance of MOR and durability with superior anti‐poisoning effect.

Keywords: oxidation; methanol oxidation; pt0 atoms; independent pt0; loaded independent; highly loaded

Journal Title: Advanced Science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.